

Case-Based Adviser for Near-Miss Programs

Hiroyoshi WATANABE, Kumiko TAKAI, Masayuki ARAI and Shigeo TAKEI
School of Science and Engineering, Teikyo University,

1-1 Toyosatodai, Utsunomiya-shi 320-8551, Japan
{hiro,kumiko,arai,takei}@ics.teikyo-u.ac.jp

Abstract. This paper describes a method of giving advice for near-miss programs
using a case-based reasoning approach in programming education. A near-miss
program is a program that does not run properly but is rather close to correct
programs. Two case-based methods of generating advice sentences are proposed; one
is based on similarity to past advice cases and the other is based on the difference
from correct programs. In addition to these, a model of giving step-by-step advice is
proposed. Based on these ideas, a case-based advice system for a simple assembly
language is implemented. The system had been utilized in actual classes and the
results suggested that the case-based advice system was useful.

1. Introduction

In programming education, programming exercise courses play an important role,
because writing programs is indispensable to learning programming. In programming
exercise classes, teachers give students various problems in order to get the students to
understand important concepts in programming. Students write programs that satisfy the
requirements of the problem and submit the program and/or report to the teacher. The
teacher reads the programs and reports to see if the students understand the concepts.
However, the teachers’ workloads in such programming classes tend to be very heavy. It is
very important to reduce the teachers’ workloads and let teachers focus their energy on
guidance that students really need.
We have proposed a case-based evaluation assistant model of novice programs and

developed a case-based evaluation assistant system for a simple assembly language CASL.
The target evaluation task is to judge whether students’ programs satisfy the requirements
of the given problem. First, the system automatically checks the actions of the students’
programs using prepared sample data, and then the system evaluates the implementation of
the programs based on evaluation cases. The system has been used in actual classes at our
university and the results showed that the system can reduce teachers’ evaluation work
drastically [1]-[3].
In the next step, we aim at giving advice on students’ programs that do not run properly;

but are rather close to correct programs. Such programs with a few bugs are called
“near-miss programs” in this paper. We propose a model of giving step by step advice, not
giving detailed advice at one time. We also propose a method of generating advice
sentences for near-miss programs by a case-based reasoning approach [4] [5]. Using the
model and the generation method, we implemented an advice system for near-miss
programs of a simple assembly language CASL-II. CASL-II is an improved version of
CASL and it is adopted in examinations for information-technology engineers certified by
the Japanese ministry of international trade and industry, instead of CASL.
There has been much research on automated diagnosis of learners’ programs [6]-[10].

Most of the researches took a knowledge-based approach. The advantages of the
knowledge-based approach include that perfect diagnosis would be done in the range of
acquired knowledge in diagnosis systems and detailed diagnosis reports could be generated
based on deep knowledge. Some systems can even explain the reasons of errors in the

learners’ programs. However, the knowledge acquisition is a big problem and few
knowledge-based diagnosis systems are used practically. We aim at implementing a
practical system by taking a case-based reasoning approach.

2. Basic Ideas

2.1 Giving Step-By-Step Advice

When teachers give advice to students, they give small hints at first and then give more

hints or detailed advice later. Students will gain more confidence when they solve problems
with small hints than in such cases where they got detailed advice. We call such a style of
giving advice “step-by-step”. Although many teachers will take this pedagogical style of
giving advice to students, most of the published automated diagnosis systems give detailed
advice, or show full reports of the diagnosis, all at once. We propose a model of giving
step-by-step advice to students in Section 3 and adopt the model to implement a case-based
advice system.
When we reflected on how we give advice to students, we noticed that we gave advice in

three or four steps. At first, we tell students generally where bugs may exist in the students’
programs. Then, we give small hints about the bugs one or two times. Finally, we explain
about the bugs and how to fix them. Based on such reflection, we adopted three or four
steps of giving advice including indicating the location of bugs as the first piece of advice.

2.2 Two Methods of Advice Sentence Generation

There are two methods of generating advice sentences using two different types of cases.
The first method is to generate advice sentences based on the similarity to advice cases,

which include a near-miss program as a problem description and advice sentences on the
program as a solution description. The advice system retrieves the most similar advice case
to a target near-miss program, compares the selected case with the target program to
generate correspondence information, and modifies the sentences from the advice case
using the correspondence information to adapt to the target program.

The second method is advice generation based on the difference between the target
near-miss program and a correct program. There are many correct programs in evaluation
case-bases of the evaluation assistant system we already implemented [1]-[3]. The advice
system retrieves the most similar evaluation case to a target near-miss program and adopts
the correct program in the retrieved case if the difference between these programs is small
enough. Advice sentences can be generated by analyzing the difference.

We adopt both of these methods because there are many more variations of buggy
programs than correct programs; the more resources for giving advice the better, in order to
deal with many variations.

3. Model of Giving Step-By-Step Advice

This section describes a model of giving step-by-step advice. When a student requests

advice for a certain program for the first time, advice about locations of bugs is presented.
After that, basically, each time when the same student requests advice for the same program,
advice sentences in the next level are presented. However, the next level of advice is not
presented if the minimum interval time has not passed from the time when the current level
of advice sentences is presented.

 Variables

Maximum number of levels of advice
sentences.
Minimum interval time until presenting
the next level of advice sentences.
Student who requested advice.
Current time.
Advice sentences.
Identification of a case used for generating
advice sentences.
Status information which includes the
following members:

N

M

student
ctime
as
cid

si

level

cid

time

The level of advice sentences
presented last time.
Identification of a case used for
generating advice sentences.
Time of presenting advice sentences
in level.

1. as,cid Advice sentences generation by a sub-
system.
2. If as is not empty then

2.1 Input si for student.
2.2 If si.cid = cid then

2.2.1 If si.level < N and ctime − si.time > M then
2.2.1.1 si.level = si.level + 1
2.2.1.2 si.time = ctime
2.2.1.3 Present as in si.level.
2.2.1.4 Save si.

2.3 else
2.3.1 si.level = 1
2.3.2 si.cid = cid
2.3.3 si.time = ctime
2.3.4 Present as in si.level.
2.3.5 Save si.

Algorithm

Figure 1. Data and an algorithm for presenting advice sentences.

Data and an algorithm for a model of giving step-by-step advice are shown in figure 1.

This algorithm is launched when a student requests advice about his/her program. First, a
sub-system of advice sentences generation (ASG sub-system) tries to generate advice
sentences (as). The ASG sub-system needs to be capable of generating N levels of advice
sentences. When the ASG sub-system cannot generate advice sentences, that is, as is empty,
the system shows such a message as “Sorry, there is no advice resource available for your
program right now”, to the student.
When the ASG sub-system generated advice sentences, the system judges whether the

system should present the next level of advice sentences or not, based on status information
(si). Status information of each student includes an identification of a case used for
generating advice sentences (si.cid), a level number of advice sentences presented so far
(si.level), and the time of the first presentation of advice sentences in the current level
(si.time).
A target program for the current advice request is regarded as almost the same as a target

program for the advice request last time, when the case identification in the status
information (si.cid) is the same as an identification of a case used for generating advice
sentences (cid) this time. In this case, advice sentences of the next levels are presented to
the student and status information of the student is updated, if an interval between the
current time and the time in status information (si.time) is longer than the pre-defined
minimum interval, M. Otherwise, the system shows a message such as “Please, try to find
bugs again with the advice presented so far. You have to wait for a while to get the next set
of advice”, to the student.
If si.cid is not the same as cid, the student is considered to have changed his/her program.

In this case, the first level of advice sentences is presented to the student.

4. Generation of Advice Sentences Based on Similarity

4.1 Advice Cases

Advice sentences for a student’s program can be generated using advice cases. Main parts

of an advice case are a near-miss program as a problem description and N levels of advice
sentences as a solution description. (N =3 in our implemented system.) Examples of a target
program and advice sentences in an advice case for a problem p-01 described in table 1 are
shown in the right side of figure 2.

Table 1. An example of problem presented to students.
No. Description
p-01 Sum the given N integers decreasing a value of an index register by one. The number of

integers is saved in the address labeled N. Integers are saved in the memory area whose start
address is labeled DATA. The sum should be saved in the address labeled ANS.

Target program
01: SUM START
02: LD GR1,ZERO
03: LD GR2,N
04: LOOP ADDA GR1,DATA,GR2
05: LAD GR2,-1,GR2
06: CPA GR2,N
07: JPL LOOP
08: ST GR1,ANS
09: RET
10: ANS DS 1
11: ZERO DC 0
12: N DC 3
13: DATA DC 3
14: DC 5
15: DC 8
16: END

01: PGM START
02: LD GR1,N
03: LAD GR0,0
04: LOOP ADDA GR0,DATA,GR1
05: LAD GR1,-1,GR1
06: CPA GR1,N
07: JPL LOOP
08: ST GR0,ANS
09: RET
10: ANS DS 1
11: N DC 3
12:DATA DC 3
13: DC 5
14: DC 8
15: END

Target program of advice

SUM PRG
LOOP LOOP
N N
DATA DATA
ANS ANS
ZERO

Correspondence of labels.

GR1 GR0
GR2 GR1

Correspondence of registers.

Advice in level 1
Bugs would be around the lines of 4, 6 and 7.

Advice case

Advice in level 2
The addition in line 4 is not performed with proper value. The

target of comparison instruction in line 6 is not proper and the
condition for jump in line 7 is not good.
Advice in level 3
When the addition of line 4 is performed for the first time, a

value added to GR0 is the (N+1)th value, because values are
stored in the addresses from DATA+0 to DATA+(N-1). You
should decrease GR1 before the addition.

Comparison of GR1 and N in line 6 is a mistake because you
are decreasing the index register GR1 by one. You should
compare GR1 with zero and change the jump instruction in line
7 to the right one.

Figure 2. Examples of an advice case and matching a student’s program and the case.

An advice case also includes retrieval information and maintenance information. The

retrieval information includes a problem identification that the near-miss program is written
for and numbers of every operation code in the near-miss program. The maintenance
information includes the name of a person (a teacher or a co-learner) and the date of adding
and updating the advice case.
Three level indexes of advice cases are constructed using information of generalized

program lists, that is a program list which covers several variations of program lists. The
case index for advice cases is almost the same as the index for evaluation cases, which is
described in [2] and [3]. The difference is that variations of redundant instructions are not
used for indexes of advice cases. An instruction is regarded as redundant when the
execution results are correct regardless of whether the instruction is removed or not. The
reason why redundant instructions are not dealt with in indexes of advice cases is because it
is difficult to detect redundant instructions in near-miss programs which are not be executed
correctly.

4.2 Processes of Generating Advice Sentences with Advice Cases

First, the most similar case to a given student’s program is retrieved from the advice

case-base by following the case index. The retrieved case is compared with the student’s

program in detail in order to investigate whether the advice sentences in the case can be
applied to the student’s program. The comparison is called a program matching process.
The processes of retrieval and the program matching are the same as ones used in
case-based program evaluation [2].

If the selected case matches the student’s program perfectly, advice sentences in the case
are used for the student’s program after simple modification. That is, label names, register
numbers and line numbers in advice sentences from the case are replaced with
corresponding ones in the given program, using correspondence information generated in
the program matching process. When no case matches student’s program perfectly, advice
sentences can not be generated.

The advice case matches the student’s program perfectly in figure 2. While advice
sentences in level one and two are used as they are, the advice sentences in level three are
modified, that is, GR0 is replaced with GR1 and GR1 is replaced with GR2 based on
correspondence information (two tables in figure 2).

5. Generation of Advice Sentences Based on Difference

5.1 Outline of Difference Based Generation

The second method is generation based on the difference between a target near-miss

program and a correct program. A correct program used for advice generation is called a
base program. In the domain of programming in assembly languages, there are five types of
difference and advice sentences depending on the type of difference.

(a) Mistakes of instructions. Operation codes or operands are different in corresponding
instructions between the target near-miss program and the base program.

(b) Lack of instructions. The target near-miss program lacks some instructions, which
should correspond with instructions in the base program.

(c) Obstacle instructions. The target near-miss program has some instructions, which do
not correspond with any instructions in the base program.

(d) Differences in order of instructions. The order of some corresponding instructions is
different between the target near-miss program and the base program.

(e) Differences of label locations. The locations of corresponding labels are different
between the target near-miss program and the base program.

Correct programs in evaluation case-bases are available for the base programs. An
evaluation case consists of a problem description, a solution description, retrieval
information and maintenance information. The problem description is a target program list
for evaluation. The actions of all programs in evaluation cases are correct, because the
actions of submitted programs are checked using prepared sample data and programs that
do not run correctly are rejected before case-based evaluation. The solution description is
evaluation results, i.e., the judgment of acceptability and written advice, although they are
not used for generating advice sentences for near-miss programs. For the details of
evaluation cases, please refer to [2].

5.2 Retrieving Base Program and Program Matching

The most similar program to a student’s near-miss program is retrieved from an evaluation

case-base. The retrieved program is compared with the student’s program in detail (program
matching) and correspondence information and difference information are generated.
Difference information of each type described in Section 5.1 is the following:
(a) Mistakes of instructions. A line number of an instruction in the target program, a line

number of the corresponding instruction in the base program and a location of the
mistake that is one of “the operation code”, “the first operand”, “the second operand”,
or “the third operand”.

(b) Lack of instructions. A line number of an instruction in the base program, which does
not have a corresponding instruction in the target program.

(c) Obstacle instructions. A line number of an instruction in the target program, which does
not have a corresponding instruction in the base program.

(d) Differences in order of instructions. A list of serial line numbers in a part of the target
program where order of corresponding instructions is different.

(e) Differences of label locations. A line number of an instruction in the base program and a
type of the difference, that is one of “(type1) two labels do not correspond”, “(type2) an
instruction in the target program has a label but one in the base program does not” or
“(type3) an instruction in the base program has a label but one in the target program
does not”.

Program matching processes for generating correspondence information and difference
information are as follows:
(1) Generating candidates of correspondence information. For each instruction in the target

program, instructions in the base program which have the same operation code as the
instruction in the target program are added to a candidate list of instruction
correspondences. Pairs of registers and pairs of labels which are derived from the
candidates of the instruction correspondences are also added to a candidate list of
register and label correspondences.

(2) Pruning the candidates and regenerating correspondence information. Candidates are
pruned in order to make consistent correspondences of instructions, labels and registers.
Because the base program should not match the target program perfectly, the strategy
that maximizes numbers of consistent correspondence is adopted. As a result of pruning
the candidates, final correspondence information is generated.

(3) Generating difference information. First, instructions which do not have corresponding
ones in the other program are picked up and difference information on (b) lack of
instructions and (c) obstacle instructions is generated. Second, the generated
information on (b) and (c) are compared and pairs of instructions that correspond except
for a small difference are detected as (a) mistakes of instructions. Information on
instructions which are detected as (a) is removed from (b) and (c). Finally, (d)
differences in order of instructions and (e) differences of label locations are derived
from correspondence information.

Figure 3 shows examples of a target near-miss program and base program for a problem
P-01 in table 1. After the process of (2), solid arrows between the target and base programs
and correspondence tables in figure 3 are generated as correspondence information. In the
process of (3), lines 4 and 5 in the base program are picked up as (b) lack of instructions
and lines 4 and 5 in the target program are picked up as (c) obstacle instructions.
Comparison of (b) and (c), two elements of (a) mistake instructions are detected and (b) and
(c) become empty. Finally, one element of (d) differences in order of instruction is detected.
The difference of order in lines 2 and 3 is not picked up because the difference is regarded
as trivial. For conditions of trivial differences of order, please refer to [2].

5.3 Generating Advice Sentences

Advice sentences are generated using correspondence and difference information

generated by program matching. For the first level, advice sentences on the location of bugs
are generated regardless of the types of difference, while advice sentences in levels 2 and 3
depend on the types of difference.

Figure 3. Examples of matching results between a target program and a base program.

Target program
01: SUM START
02: LD GR1,ZERO
03: LD GR2,N
04: LOOP ADDA GR1,DATA,GR2
05: LAD GR2,-1,GR2
06: CPA GR2,N
07: JPL LOOP
08: ST GR1,ANS
09: RET
10: ANS DS 1
11: ZERO DC 0
12: N DC 3
13: DATA DC 3
14: DC 5
15: DC 8
16: END

01: PGM START
02: LD GR1,N
03: LD GR0,C0
04: LOOP LAD GR1,-1,GR1
05: ADDA GR0,DATA,GR1
06: CPA GR1,C0
07: JMI LOOP
08: ST GR0,ANS
09: RET
10: C0 DC 0
11: ANS DS 1
12: N DC 3
13: DATA DC 3
14: DC 5
15: DC 8
16: END

Base program (program in an evaluation case)

SUM PRG
LOOP LOOP
N N
DATA DATA
ANS ANS
ZERO C0

Correspondence of labels.

GR1 GR0
GR2 GR1

Correspondence of registers.

Difference information.
(a) Mistakes of instructions

(a-1) Line 6 in the target program.
Line 6 in the base program.
The second operands are different.

(a-2) Line 7 in the target program.
Line 7 in the base program.
The operation codes are different.

(d) Difference in order of instructions
(d-1) Line 4 and line 5

Advice sentences generated from the situation in figure 3 will be the following:
Level1: Bugs are around line 4 to line 7.
Level2: Check the order of instructions in lines 4 and 5. Check the instructions in lines 6

and 7.
Level3: Should the order of instructions in lines 4 and 5 be lines 5, 4? Check the operands

in line 6. Check the operation code in line 7.
Level4: Should the second operand in line 6 be “N”? Should the operation code in line 7

be “JMI”?

6. Experience of Using Case-based Advice System in Actual Classes

Based on the ideas described so far, we implemented a case-based sub-system of

generating advice sentences and added the sub-system to the evaluation assistant system,
which we had already implemented. We used the system in two classes of the CPU and
assembly language course at Teikyo University in 2002. The students in the classes
numbered 91 and 90. We just included an explanation of the advice system on the web page
which explains how to submit programs, but we did not emphasize the advice system,
because we wanted to investigate the needs of such advice systems. We presented 28
problems in the two classes. There were evaluation case-bases for 11 of the 28 problems
because we had presented the 11 problems before. There were advice case-bases for 8 of
the 11 problems.
There were 486 advice requests for 28 problems. The numbers of advice requests depend

on problems. The maximum number of requests for one problem was 61 and they were
from 18 of 90 students. This result shows that needs for advice systems are high because
the advice request from 20% of students is considered to be a high rate for traditional style
classes in which students can ask questions of teachers or students. The rate will be higher
in self-learning style classes in an e-learning environment.

Table 2. Results of counting advice request logs. Table 3. Results of a questionnaire.
 CB None Total How the advice is useful? Number
a Advice is presented by
similarity based method 72 0 72 Advice was useful many times. 11
b Advice is presented by
difference based method 68 61 129 Advice was useful some times. 27
c total of advice requests 226 260 486 Advice was not very useful. 11
 (a+b)/c x 100 (%) 61.9 23.5 41.4

I did not request advice. 59
CB: 11 problems which have past cases.
None: 17 problems whose case-bases was empty at first.

Table 2 shows results of counting advice request logs. The ratio of cases in which advice

sentences were presented for advice requests is rather high (62%) when there were
case-bases, although the ratio is low when the case-bases are empty. Table 3 shows results
of a questionnaire after classes. Not all the students answered the questionnaire. Table 3
shows that the advice system was useful for 22% of students who used the system.

The usefulness of the case-based adviser is suggested through the experience with the
implemented case-based advice system, although the performance of the system has not
been sufficiently high so far. The performance of the system can be improved by adding
new cases to its case-bases.

7. Conclusions

We have proposed a framework of a case-based adviser for near-miss programs. Based on

the idea, we implemented a case-based advice system for a simple assembly language
CASL II. Experience using the system in actual classes suggests that a case-based advice
system is useful for students. Systems implemented based on the idea will be useful tools
especially for e-learning environments. In the future, we plan to improve the performance
of our system and investigate effectiveness of the proposed case-based adviser in detail.
This research was supported in part by JSPS Grants-in-Aid for Scientific Research

No.14580428.

References

[1] H. Watanabe, M. Arai, and S. Takei, Automated Evaluation of Novice Programs Written in Assembly

Language, Proc. of ICCE99, Chiba, 2 (1999) pp. 165-168.
[2] H.Watanabe, M.Arai and S.Takei, Case-based Evaluation of Novice Programs, Proc of AI-ED2001, San

Antonio, pp.55 – 64(2001).
[3] H.Watanabe, M.Arai and S.Takei, A Method of Constructing Case-base for Evaluation Assistant of

Novice Programs, Proc. of ICCE2001, Soul, 1 (2001) pp.313 – 320.
[4] J.Kolodner, Case-Based Reasoning, Morgan Kaufmann Publishers,Inc. (1993).
[5] D. Leake ed., Case-Based Reasoning: Experiences, Lessons and Future Directions, AAAI Press / MIT

Press, (1996).
[6] A. Adam and J. P. Laurent, LAURA, A System to Debug Student Programs, Artificial Intelligence, 15

(1980) pp.75-122.
[7] W. L. Johnson, Understanding and Debugging Novice Programs, Artificial Intelligence, 41 (1990)

pp.51-97.
[8] W. R. Murray, Automatic Program Debugging for Intelligent Tutoring Systems, Computational

Intelligence, 3 (1987) pp.1-16.
[9] Schorsch,T. , CAP: An Automated Self-Assessment Tool to Check Pascal Programs for Syntax, Logic and

Style Errors, Proc. of SIGCSE95, (1995) pp.168 -172.
[10] H. Ueno, Concepts and Methodologies for Knowledge-Based Program Understanding - The ALPUS's

Approach, IEICE Trans. Inf. & Syst., E78-D, no.2 (1995) pp.1108-1117.
[11] S. Kim and J. H. Kim, Algorithm Recognition for Programming Tutoring Based on Flow Graph Parsing,

Applied Intelligence, 6, iss.2 (1996) pp.153-164.

